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Abstract

In this paper we present a method to calculate optical properties of small fractal clusters of spheres
constructed in a recursive manner in the quasistatic approximation. To calculate optical properties
of octahedral generator of six spheres we used the dipole-dipole approximation developed in
Shalaev theory. After S iterations we received a fractal cluster of N particles with determined
optical properties.

1. Introduction

Electromagnetic phenomena in random metal-insulator composites, such as rough thin films, cermets,
colloidal aggregates and other, have been intensively studied for the last two decades [1]. These media
typically include small nanometer - scale particles or roughness features. Often nanocomposites,
within a certain interval of length-scale, are characterized by a random fractal, i.e. scale - invariant
structure. Fractals look similar at different scales; in other words, a part of the object resembles the
whole [2]. In this paper we study optical absorption by deterministic, recursively constructed three -
dimensional fractal aggregates consisting of spherical metallic particles. Usually, it is quite difficult to
calculate optical properties of fractal clusters containing a large number of particles. The most
convenient way is to use the scale - invariant properties of the fractal structure. To illustrate the
geometrical construction of the fractal, consider a cluster of N = 6 spheres as shown in Fig.1. Here
we depict how the first two stages of such a construction can be built from individual spherical
particles. First we calculate the optical properties of a small cluster - generator of six spheres. Further
we shall use these aggregates as generators for an iterative procedure to obtain the fractal system after
a number of recursive iterations. The optical parameters of these generated clusters are assigned to a
new "effective particle", which instead will participate in the iteration process. Finally, after S
iterations, we receive a fractal cluster of N particles with determined optical parameters. For
generators containing six spheres we have applied a method of taking into account pair dipole-dipole
interactions between particles within the cluster, developed in the works of Shalaev [3-4].

2. Polarizability of a Cluster and Recursive Approach

We assume that the fractal cluster is located in a continuous dielectric matrix with permittivity co = 1.
We also assume that the size of generator and of the all cluster after S iterations is small compared
with the wavelength of incident radiation. This fact will allow us to neglect retardation effects and
describe whole system in quasi-static limit. Following the results of previous works [3-4], we can
write induced dipole moments of the generator in the form:
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di'a = aO°E(°) +XWijapdjp (1)

WijcLI= (i=lOwlJ ) = Ha3 - 3 r j (2)
ri j r

where Wija• is a quasi-static interaction operator between each pair of particles; a, 13 = x, y, z are the

coordinates of particles in three dimensional space; rij = . ri - rj is a distance between particles; ri

and rj are the origins of spheres i and j, respectively.

aO=Ba3 = E-EO a 3  (3), + 2F-0

is the usual dipole polarizability of the spherical particle with radius a .The polarizability tensor of the
i-th particle interacting with all neighboring j • i particles can be found from Eq. (1-2) [3-4]:

(i,a• (w) E (i[ n) (nI 113) (4)

where wn and (i I n)(nj 1) are eigenvalues and eigenvectors of the interaction matrix

W respectively, i.e. Win) = WnIn). The average polarizability of the generator is given by:

ac(0) = XNYTr[a(ai (5)

where N is a number of particles in generator.
Consider now the octahedral cluster with N = 6 spheres shown in Fig. 1 with sphere radius a and
distance between nearest neighbors R = 2aa. According to the iteration scheme [5], the radius of the
equivalent sphere after the first step of iteration (S = 1) is a(1)= R /2+a = a(1+ a). The same

procedure can be applied, for example, to the octahedral generator with N = 7 spheres, where after the

first iteration the equivalent radius becomes a(1)=a(+F+Va). Taking into account self-similar
properties of fractal cluster, we can assume that after S iterations the radius of the single "effective
sphere" in the final cluster is [6]

a(s)= a( + ,)s (6)

for the N = 6 generator. After S steps of the iteration process for N = 6 generator, the recursive relation

for B(s), which should be used for calculation of "effective sphere" polarization, has a form:

B (1 +a)-3 (ia In)(n 11)

- • + ( s 1)•,1 "w -" )3(s- 1) 
(7)n (B + wn + a'0 1)(s-l

Therefore, the extinction cross-section of the fractal cluster with generator N = 6 after S iterations
should be:

G(s) = 4cNs Im a3 (1 + (,)3s (B(s-l)-1 (ian)(nI 113) (8)n~~ (8)'Ylw ( )3S1
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where k = 2 // and X denotes the wavelength of incident radiation in the system.

N=6 S=1 N=6 S=1 N=36 S=2

la)

2aa1

Fig. 1 The iterative procedure of cluster construction when a cluster of spheres N=6 is replaced by a
single equivalent sphere, which is used to construct a larger cluster in a self-similar manner. The fractal

dimension of the resulting fractal cluster is D = ln( ln + a)

3. Results and Discussion

We have applied this theory to the deterministic fractal of metallic particles N = 6 depicted in Fig. I
for the S = 1, 2 iteration steps. In Fig. 2 we present the results of our calculations by plotting the

extinction efficiency of the fractal cluster N = 6 as a function of co = 0/ , where cop is a plasma

frequency of metallic particles. We have specified the properties of the particle material by the values

cop =1.37-10 16 s-1, y=7.14.10 13 s-1 . The average size of particles a =30A and diameter
0

d = 61A, gives us the parameter a = 1.017. We observe that the main features of the spectra are
present already in the dipolar approximation of the Shalaev theory [3-4]. Our results show that the
response of the system is strongly dependent on the volume fraction of particles in cluster, which
decreases rapidly with arising number S of iterations. This is very interesting, because in the normal
non-fractal structures the volume fraction of particles should be approximately constant with
increasing number of iterations (i.e. number of particles in the cluster N -- o ). In the same time the
magnitude of spectra also decreases with arising number S. Indeed, the self-similar properties of
fractal clusters, which save its geometrical structure, after S iterations make them more "transparent".
We have also observed that, in particular, the low frequency peak shift to lower frequencies as
parameter a decreases. It should be noted that the two peaks in Fig.2. are in qualitative agreement
with theoretical results obtained by application of Ausloos theory [7]. In experiments on random
fractal metal aggregates, a two-peak absorption, qualitatively similar to Fig.2 has been observed [8-
11]. We are not aware of any data on the behavior of these peaks as a function of aggregate size or
particle separation. For linear chains, the low frequency peak shift to low frequency with increasing
number of particles [12]. It would be interesting to investigate whether this is the case for anisotropic
fractals also. Our method could, in principle, be used for two-scale anisotropic fractal structures. The
present method has large similarities with Discrete Dipole Approximation [13] largely used by
astrophysicists. This may point a way to extend the method to large particle clusters beyond the
quasistatic limit.
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Fig2. The logarithm of the extinction efficiency as a function of
normalized frequency for the generator of 6 spheres (Fig. 1.) at
cr =1.017. For comparison the results at the first (s=1), second (s=2)
and third (s=3) stages of iteration process are shown. The dot-dashed
curve gives results of direct application of Mie theory to given cluster
of 6 spheres considered as a one spherical particle.
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